Abstract

A family of alkali uranium(IV) phosphates, AU2(PO4)3 (A = Li – Cs), was synthesized as single crystals by the reaction of US2 and (NH4)2HPO4 in the respective ACl (A = Li – Cs) flux contained in a sealed fused-silica tube at 850 °C, and as phase pure powders from a similar reaction using UF4 as the uranium source. AU2(PO4)3 (A = Li – Rb) crystallize in the NaTh2(PO4)3 (NTP) structure type with monoclinic space group C2/c and consist of a 3D structure that features a framework composed of edge- and corner-sharing polyhedra. The cesium analogue, CsU2(PO4)3, crystallizes in a different structure with space group P21/n that is related to the NaZr2(PO4)3 (NZP) structure type and consists of a framework composed of corner-sharing polyhedra. Two new alkali uranium phosphates, Li2U(PO4)2 and Cs4U4(P2O7)5, were also grown as single crystals at 700 °C. Li2U(PO4)2 was isolated in approximately 30% yield based on uranium. Li2U(PO4)2 crystallizes in space group P21/c exhibiting a layered structure while Cs4U4(P2O7)5, crystallizes in space group P21/n in a new structure type featuring a 3D framework. The magnetic susceptibilities and the field dependent magnetizations were measured for AU2(PO4)3 (A = Li, Na, K and Cs); all compounds exhibited negative Weiss temperatures with no obvious antiferromagnetic transition. Optical properties were measured by UV–vis and IR spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call