Abstract
Single crystals of a new titanium oxysulfide, LiLa3Ti2S3O6, were grown from a KI molten salt. Single-crystal X-ray diffraction analysis revealed that LiLa3Ti2S3O6 crystallizes in the space group Pnma with lattice parameters of a = 11.7319(4) Å, b = 3.94787(14) Å, and c = 20.6885(6) Å. In this structure, the one-dimensional chains of corner-sharing TiO5S octahedra are further corner-linked via equatorial and apical oxygen atoms to form unique corrugated two-dimensional perovskite-type layers in the ab plane with one octahedral thickness. These layers were intervened along the c-axis by the LaS rock-salt layers corrugated concomitantly with the perovskite-type layers, and LiO2S2 tetrahedral chains were located between these two types of two-dimensional layers. LiLa3Ti2S3O6 can be viewed as a modified K2NiF4-type structure with TiO5S octahedral layers stacked in a zigzag manner along the c axis. The oxysulfide has a direct-type band gap of 1.85 eV, based on UV-vis-NIR diffuse reflectance measurements. First-principles calculations showed that the conduction band minimum mainly consists of Ti 3d orbitals, and the valence band maximum consists of S 3p, O 2p, and Li 2s orbitals. The electronic structures near the Fermi level are similar to those of the structurally related photocatalytic oxysulfides Y2Ti2S2O5 and La5Ti2CuS5O7.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.