Abstract

Copper–indium–gallium–sulfide–selenide (CIGSSe) is used in photovoltaic cells and photocathodes, because of its tunable optoelectronic properties, but the fabrication of CIGSSe samples usually requires a multistage process under vacuum. Herein we used a flux growth technique for the sulfide system and achieved efficient flux growth of idiomorphic copper–indium–sulfide CuInS2 crystals of size ∼5 μm from a NaCl–InCl3 flux under mild conditions at ambient pressures. We first examined the flux growth conditions such as holding temperature, solute concentration, and holding time for growing highly crystalline CuInS2 crystals. A moderate holding temperature (∼550 °C) and high solute concentration (∼70 mol %) yielded idiomorphic pure CuInS2 crystals. High-resolution transmission electron microscopy showed clear electron diffraction spots, indicating that the resultant CuInS2 crystals had a highly crystalline, intrinsic tetragonal crystal structure. Thermogravimetry-differential thermal analysis showed that the CuInS2 crystals grew efficiently during flux evaporation at 550 °C, at which the flux evaporation degree reached ∼81%. The CuInS2 crystal growth mode is discussed based on the characterization results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.