Abstract

The potential for the generation of dangerous and damaging lahars and floods in response to the eruption of voluminous pyroclastic debris has become increasingly appreciated in recent years. The style and tempo of this response varies both between eruptions and between individual catchments impacted by a single eruption, so that an understanding of the factors controlling this variation is necessary for precise hazard assessment. The 1800a Taupo eruption from the Taupo Volcanic Centre in the central North Island of New Zealand devastated an area of 20,000 km 2 during eruption of a climactic ignimbrite, impacting the headwaters of all major rivers draining radially from this region. The Rangitaiki River, the subject of this paper, differs from other catchments in that the Taupo ignimbrite buried an essentially flat land surface inherited from a suite of welded ignimbrite sheets erupted between 320–340 and 230 ka. The middle reaches of the catchment are characterised by narrow, steep gorges alternating with low-gradient basins developed in tectonic half-grabens. Initially, remobilisation of pyroclastic material in the headwaters was dominated by hyperconcentrated sheet flows resulting in shallow reworking. In higher gradient areas, reintegration of drainage networks was achieved by incision of deep channels and gullies, assisted by breakouts from ephemeral lakelets developed in ignimbrite-dammed depressions. Braided, and later meandering, streams superseded this pattern as rill and gully systems stabilised and sediment yields fell leading to a decline in drainage density. Gorge reaches acted as efficient conduits for remobilised material while the basins acted as local depocentres for the temporary storage of volcaniclastic sediments, mediating the transfer of pyroclastic debris to the Bay of Plenty coast >100 km to the north. Reworking and resedimentation of pyroclastic debris began immediately after the eruption, peaking early and then rapidly declining so that most geomorphic adjustments occurred within one or two decades of the initial disturbance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.