Abstract

AbstractAlthough mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic‐to‐terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic‐to‐terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller‐bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic‐to‐terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call