Abstract

We investigated the effect of fluvastatin sodium (fluvastatin) and pravastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, on the formation of thiobarbituric acid reactive substances both in vivo and in vitro in rat liver microsomes and on active oxygen species. Oral administration of fluvastatin at low doses (3.13 and 6.25 mg/kg) inhibited the formation of thiobarbituric acid reactive substances in rat liver microsomes, but high doses (12.5 and 25 mg/kg) did not change the formation of thiobarbituric acid reactive substances. Fluvastatin at any dose used had no effect on the content of cytochrome P-450 and the activity of NADPH-cytochrome P-450 reductase. In in vitro experiments, concentrations of fluvastatin ranging from 1×10 −6–1×10 −4 M markedly inhibited NADPH-dependent lipid peroxidation in liver microsomes, but pravastatin weakly inhibited lipid peroxidation. The order of magnitude of inhibition of each drug on in vitro lipid peroxidation was butylated hydroxytoluene>probucol≥fluvastatin>pravastatin. Moreover, fluvastatin chemically scavenged active oxygen species such as hydroxyl radicals and superoxide anion generated by the Fenton reaction and by the xanthine–xanthine oxidase system, respectively, but pravastatin showed no scavenging of superoxide anion. These results indicate that the suppression of in vivo and in vitro lipid peroxidation in liver microsomes may be, at least in part, due to the scavenging by fluvastatin of free radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call