Abstract
We investigated the effect of fluvastatin sodium (fluvastatin) and pravastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, on the formation of thiobarbituric acid reactive substances both in vivo and in vitro in rat liver microsomes and on active oxygen species. Oral administration of fluvastatin at low doses (3.13 and 6.25 mg/kg) inhibited the formation of thiobarbituric acid reactive substances in rat liver microsomes, but high doses (12.5 and 25 mg/kg) did not change the formation of thiobarbituric acid reactive substances. Fluvastatin at any dose used had no effect on the content of cytochrome P-450 and the activity of NADPH-cytochrome P-450 reductase. In in vitro experiments, concentrations of fluvastatin ranging from 1×10 −6–1×10 −4 M markedly inhibited NADPH-dependent lipid peroxidation in liver microsomes, but pravastatin weakly inhibited lipid peroxidation. The order of magnitude of inhibition of each drug on in vitro lipid peroxidation was butylated hydroxytoluene>probucol≥fluvastatin>pravastatin. Moreover, fluvastatin chemically scavenged active oxygen species such as hydroxyl radicals and superoxide anion generated by the Fenton reaction and by the xanthine–xanthine oxidase system, respectively, but pravastatin showed no scavenging of superoxide anion. These results indicate that the suppression of in vivo and in vitro lipid peroxidation in liver microsomes may be, at least in part, due to the scavenging by fluvastatin of free radicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.