Abstract

Based on the proposed emergency bridge scheme, the flutter performance of the emergency bridge with the new-type cable-girder has been investigated through wind tunnel tests and numerical simulation analyses. Four aerodynamic optimization schemes have been developed in consideration of structure characteristics of the emergency bridge. The flutter performances of the aerodynamic optimization schemes have been investigated. The flutter derivatives of four aerodynamic optimization schemes have been analyzed. According to the results, the optimal scheme has been determined. Based on flutter theory of bridge, the differential equations of flutter of the emergency bridge with new-type cable-girder have been established. Iterative method has been used for solving the differential equations. The flutter analysis program has been compiled using the APDL language in ANSYS, and the bridge flutter critical wind speed of the optimal scheme has been determined by the program. The flutter analysis program has also been used to determine the bridge flutter critical wind speed of different wind-resistance cable schemes. The results indicate that the bridge flutter critical wind speed of the original emergency bridge scheme is lower than the flutter checking wind speed. The aerodynamic combined measurements of central-slotted and wind fairing are the optimal scheme, with the safety coefficients larger than 1.2 at the wind attack angles of −3°, 0°, and +3°. The bridge flutter critical wind speed of the optimal scheme has been determined using the flutter analysis program, and the numerical results agree well with the wind tunnel test results. The wind-resistance cable scheme of 90° is the optimal wind cable scheme, and the bridge flutter critical wind speed increased 31.4%. However, in consideration of the convenience in construction and the effectiveness in erection, the scheme of wind-resistance cable in the horizontal direction has been selected to be used in the emergency bridge with new-type cable-girder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.