Abstract

This paper presents the initial results from a research effort on blisk and bladed disk mistuning including both structural and aerodynamic coupling. The structural coupling model is based on the Fundamental Mistuning Model (FMM, developed by Feiner & Griffin). This effort extends the FMM technique to accept the aerodynamic coupling coefficients from computational fluid dynamic (CFD) codes. The extended model is applied to a representative engine case. The model and initial studies to identify flutter sensitivities to random and near alternate mistuning are presented. Comparisons are given of tuned and mistuned flutter for only aerodynamic coupling, and with both aerodynamic and structural coupling. For the case studied herein the beneficial effect of mistuning on flutter predicted by aerodynamic coupling models is shown to be greatly inhibited by the inclusion of the structural coupling effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.