Abstract

A two-dimensional plate model for the aeroelastic flutter of low aspect ratio composite wing is taken based on the classical plate theory and fluid–structure interaction methodology and is adapted for further studies. The domain model and the corresponding supersonic loads are defined in accordance with Hamilton principle and first-order piston theories, respectively. Natural frequencies and flutter velocity are analysed and verified using the differential quadrature method (DQM) literatures, in comparison with the fluid–structure interaction method. Based on the parametric study carried out, the results show that the flutter characteristics are strongly dependent on cross-ply laminates and these kinds of vibration in the low aspect ratio composite wings can occur only in the high circumferential frequencies. The effects of the aspect ratio on supersonic flutter characteristics of laminated wings are investigated, with constant surface area and constant thickness, and all the layers are of equal thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call