Abstract
Steel connections play a crucial role in maintaining the integrity and stability of steel building frames especially when exposed to fire temperatures. The behavior of flush endplate connections in fire is shown to be governed by tension bolt failure as bolts lose their strength and stiffness more rapidly at higher temperatures. As a result, the ability to predict the development of stresses in tension bolts of flush endplate connections at different stages of fire is of special importance. One of the factors influencing bolt stresses in fire is the thermal creep or time-dependent inelastic response of steel to elevated temperatures. Therefore, time- and temperature-dependent behavior of tension bolts of flush endplate connections in fire is the focus of this study. Stress-time histories in tension bolts are obtained by explicit consideration of thermal creep of steel in FE models of flush endplate connections at elevated temperatures. To better understand the effect of thermal creep on tension bolt behavior, the correlation between time-dependent rotational deformation of flush endplate connections and bolt stresses is also investigated. Further, the isochronous representation is utilized to study the rotational deformation and the tension bolt stresses under various applied moments ranging from 50% to 95% of the moment capacity and fire temperatures ranging from 450°C to 600°C with 25°C increment. Through such representation, it is indicated that the connection behavior is not only dependent on bolt strength degradation and applied moment, but also affected by the time duration of applied moments and temperatures. Also, with the inclusion of thermal creep of steel, the connection experiences higher rotation and excessive endplate deformation with stress relaxation leading to top tension bolt failure at earlier stages of fire. More specifically, for time exposure greater than or equal to 60 min, the failure temperature of the connection decreases from 600°C to around 550°C. Therefore, neglecting thermal creep of structural steel may result in an unsafe prediction of the overall response of flush endplate connections in fire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.