Abstract

The present work aimed to prolong the contact time of flurbiprofen (FBP) in the ocular tissue to improve the drug anti-inflammatory activity. Different niosome systems were fabricated adopting thin-film hydration technique and using the nonionic surfactant Span 60. The morphology of the prepared niosomes was characterized by scanning electron microscopy (SEM). Physical characterization by differential scanning calorimetry, X-ray powder diffraction and Fourier transform infrared spectroscopy were conducted for the optimized formula (F5) that was selected on the basis of percent entrapment efficiency, vesicular size and total lipid content. F5 was formulated as 1% w/w Carpobol 934 gel. Pharmacokinetic parameters of FBP were investigated following ocular administration of F5-loaded gel system, F5 niosome dispersion or the corresponding FBP ocular drops to albino rabbits dispersion. Anti-inflamatory effect of F5-loaded carbopol gel was investigated by histopathological examination of the corneal tissue before and after the treatment of inflamed rabbit eye with the system. Results showed that cholesterol content, surfactant type. and total lipid contents had an apparent impact on the vesicle size of the formulated niosomes. Physical characterization revealed reduced drug crystallinity and incidence of interaction with other niosome contents. F5-loaded gel showed higher Cmax, area under the curve (AUC0–12), and thus higher ocular bioavailability than those of the corresponding FBP ocular solution. F5-loaded gel showed a promising rapid anti-inflammatory effect in the inflamed rabbit eye. These findings will eradicate the necessity for frequent ocular drug instillation and thus, improve patient compliance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call