Abstract
Protein misfolding and aggregation, leading to amyloid fibril formation, are characteristic of many devastating and debilitating amyloid diseases. Accordingly, there is significant interest in the mechanisms underlying amyloid fibril formation and identification of possible intervention tools. Small molecule drug compounds approved for human use or for use in phase I-III clinical trials were investigated for their effects on amyloid formation by human apolipoprotein (apo) C-II. Several of these compounds modulated the rate of amyloid formation by apoC-II. Epigallocatechin gallate (EGCG), a green tea catechin, was an effective inhibitor of apoC-II fibril formation, and the antipsychotic drug, fluphenazine·HCl, was a potent activator. Both EGCG and fluphenazine·HCl exerted concentration-dependent effects on the rate of fibril formation, bound to apoC-II fibrils with high affinity, and competitively reduced thioflavin T binding. EGCG significantly altered the size distribution of fibrils, most likely by promoting the lateral association of fibrils and subsequent formation of large aggregates. Fluphenazine·HCl did not significantly alter the size distribution of fibrils, but it may induce the formation of a small population of rod-like fibrils that differ from the characteristic ribbon-like fibrils normally observed for apoC-II. The findings of this study emphasize the effects of small molecule drugs on the kinetics of amyloid fibril formation and their roles in determining fibril structure and aggregate size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.