Abstract
Although depression and cardiovascular diseases are related, the role of antidepressants such as fluoxetine (increasing serotonin levels) within cardiac regulation remains unclear. We aimed to determine whether fluoxetine modifies the pharmacological profile of serotonergic influence on vagal cardiac outflow. Rats were treated with fluoxetine (10 mg/kg per day; p.o.) for 14 days or equivalent volumes of drinking water (control group); then, they were pithed and prepared for vagal stimulation. Bradycardic responses were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or i.v. acetylcholine (ACh; 1, 5, and 10 μg/kg). The i.v. administration of 5-hydroxytryptamine (5-HT; 10 and 50 μg/kg) inhibited the vagally induced bradycardia. 5-CT (5-HT1/7 agonist) and L-694,247 (5-HT1D agonist) mimicked the serotonin inhibitory effect while α-methyl-5-HT (5-HT2 agonist) was devoid of any action. SB269970 (5-HT7 antagonist) did not abolish 5-CT inhibitory action on the electrically induced bradycardia. Pretreatment with LY310762 (5-HT1D antagonist) blocked the effects induced by L-694,247 and 5-CT. 5-HT and 5-CT failed to modify the bradycardia induced by exogenous ACh. Our outcomes suggest that fluoxetine treatment modifies 5-HT modulation on heart parasympathetic neurotransmission in rats, evoking inhibition of the bradycardia via prejunctional 5-HT1D in pithed rats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.