Abstract

Neuroplasticity and inflammation represent a common final pathway for effective antidepressant treatment. SSRIs are the most commonly prescribed medications for depression and have demonstrated efficacy in reducing depressive symptoms. However, the precise impact of SSRIs on neuroplasticity and inflammation remains unclear. In this study, we aimed to investigate the influence of long-term treatment with SSRIs on hippocampal neuron, inflammation, synaptic function and morphology. Our findings revealed that fluoxetine treatment significantly alleviated behavioral despair, anhedonia, and anxiety in reserpine-treated mice. Moreover, fluoxetine mitigated hippocampal neuron impairment, inhibited inflammatory release, and increased the expression of synaptic proteins markers (SYP and PSD95) in mice. Notably, fluoxetine also suppressed reserpine-induced synapse loss in the hippocampus. Based on these results, fluoxetine has been demonstrated effectively to ameliorate depressive mood and cognitive dysfunction, possibly through the enhancement of synaptic plasticity. Overall, our study contributes to a further understanding of the mechanisms underlying the therapeutic effects of fluoxetine and its potential role in improving depressive symptoms and cognitive impairments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call