Abstract

Continuing from the foundation laid by our previous work in the field, we present here an examination of the effects of monolith density and overall composition on the efficacy of performance in the realm of fluorous separations. By variation of the proportions of monomer and cross-linking agent relative to a static porogenic solvent composition, it was found that a composition of 30% polymer-forming material provides the optimal results in terms of resolution and peak shape for fluorous chromatography of a mixture of similarly labeled benzylamines. The presence of so-called "secondary interactions" that can compete with fluorous specificity in columns of this type were also examined and discussed, with similar results to those observed for commercial fluorous columns being noted. We suggest that these effects may actually be positive if they can be properly harnessed, as the ability to provide a second dimension for fluorous separations based on polarity may allow more complex analyses of labeled proteomic samples to be effectively undertaken. Finally, we present some initial results on the effectiveness of our optimized fluorous monoliths in a series of tagging and separation experiments using a custom-synthesized peptide. With successful resolution of labeled biological samples from their nonfluorous counterparts achieved, we discuss the potential expansion and further applicability of fluorous monoliths of this type in proteomic avenues, as well as their amenability to the greater analytical community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call