Journal of Membrane Science and Research | VOL. 5
Read

Fluorosilaned-TiO2/PVDF Membrane Distillation with Improved Wetting Resistance for Water Recovery from High Solid Loading Wastewater

Publication Date Jan 1, 2019

Abstract

Membrane distillation (MD) has emerged as an important technology for applications in industries such as seawater desalination and wastewater treatment due to its low energy requirement and theoretically low fouling propensity. However, the main obstacle to obtain high separating efciency in MD lies on the availability of porous hydrophobic membrane that can withstand pore wetting and membrane fouling. In this work, a dual coagulation bath method was introduced to alter the membrane morphology by increasing its porosity, surface roughness as well as polymer crystallinity. To increase the membrane hydrophobicity, membrane roughness was induced by adding TiO2 nanoparticles. However, this has brought concomitant impacts by lowering its porosity due to the pore blocking and reducing hydrophobicity due to the presence of hydroxyl group on TiO2 surface. Introduction of silanized TiO2 modifed at pH 7 gave higher contact angle (131.7±4) that could withstand the pore wetting and at the same time maintained its high permeation flux (12kg/m2.h) and excellent nutrient removal efciency of 99.65%. Consistent flux around 6 kg/m2.h for Paper Mill Sequence Batch Reactor (PMSE) could be achieved showing that the membrane wetting and fouling resistance towards solids were good. The system efciency was around 55% which was comparable to the pure water treatment process (50%). However, the membrane was not suitable to be used for treatment of the oil-rich Palm Oil Mill Efuent (POME) as the flux dropped from 6 to 2 kg/m2.h after 7 hours of operation...

Concepts

Membrane Fouling Important Technology For Applications Membrane Distillation Adding TiO2 Nanoparticles High Permeation Flux Low Energy Requirement Membrane Roughness Hours Of Operation Membrane Wetting Fouling Resistance

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.