Abstract

We propose a molecular design for lithium (Li)-ion-ordered complex structures in nonflammable concentrated electrolytes that facilitates the Li-ion battery (LIB) electrode reaction to produce safer LIBs. The concentrated electrolyte, composed of Li bis(fluorosulfonyl)amide (FSA) salt and a nonflammable tris(2,2,2-trifluoroethyl) phosphate (TFEP) solvent, showed no electrode reaction (i.e., no Li-ion intercalation into the negative graphite electrode); however, introducing a small molecular additive (acetonitrile [AN]) into concentrated TFEP-based electrolytes is shown to improve the battery electrode reaction, leading to reversible charge/discharge behavior. Combined high-energy X-ray total scattering experiments incorporating all-atom molecular dynamics simulations were used to visualize Li-ion complexes at the molecular level and revealed that (1) Li ions form mononuclear complexes in a concentrated LiFSA/TFEP (without additives) owing to solvation steric effects arising from the molecular size of TFEP and (2) adding a small-sized additive, AN, reduces the steric effect and triggers a change in Li-ion structures, i.e., the formation of a specific Li-ion-ordered structure linked via FSA anions. These Li-ion-ordered complexes stabilize the energy of the lowest unoccupied molecular orbital (LUMO) on FSA anions, which is key to producing an anion-derived solid electrolyte interphase (SEI) at the graphite electrode. We performed in situ surface-enhanced infrared absorption spectroscopy and discussed the electrode/electrolyte interface and SEI formation mechanisms in TFEP-based concentrated electrolyte systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call