Abstract
An efficient fluorometric detection system of DNA methylation has been developed by a combination of a photooxidative DNA cleavage reaction with 2-methyl-1,4-naphthoquinone (NQ) chromophore and an invasive cleavage reaction with human Flap endonuclease-1. Enzymatic treatment of a mixture of photochemically fragmented target oligodeoxynucleotides (ODNs) at 5-methylcytosine mC) and hairpin-like probe oligomer possessing a fluorophore (F) and a quencher (D) resulted in a dramatic enhancement of fluorescence. In contrast, fluorescence emission for the ODN containing cytosine but not mC at the target sequence was extremely weak. In addition, by monitoring the fluorescence change, this system allows for the detection of mC in DNA at subfemtomole amounts. This system would provide a highly sensitive protocol for determining the methylation status in DNA by fluorescence emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.