Abstract

A fluorometric method is presented for sensitive deternination of microRNA. It is making use of carbon dots (C-dots) loaded with a DNA probe as fluorophore and MnO2 nanosheets asthe quenching agent. The blue-green fluorescence of the DNA-loaded C-dots is quenched by the MnO2 nanosheets, but restored on binding target microRNA-155. The maximum excitation wavelength and the maximum emission wavelength of C-dots are at 360nm and 455nm, respectively. Fluorescence correlates linearly with the log of the microRNA-155 concentration in two ranges, viz. from 0.15 to 1.65 aM and from 1.65 to 20 aM. The detection limit is as low as 0.1 aM. The assay can discriminate between fully complementary and single-base mismatch microRNA. The assay displayed high specificity when used to detect MCF-7 breast cancer cells which can be detected in concentrations from 1000 to 45,000 cells·mL-1, with a 600 cells·mL-1 detection limit. The method was applied to the analysis of serum samples spiked with microRNA, and satisfactory results were acquired. Graphical abstract Schematic of a fluorometric sensing platform for miRNA-155. The method relies on aFRET process between C-dots and MnO2 nanosheets. This strategy has a practical application for detection of miRNA in cell lines and biological fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.