Abstract

BackgroundEfflux pump activity has been associated with multidrug resistance phenotypes in bacteria, compromising the effectiveness of antimicrobial therapy. The development of methods for the early detection and quantification of drug transport across the bacterial cell wall is a tool essential to understand and overcome this type of drug resistance mechanism. This approach was developed to study the transport of the efflux pump substrate ethidium bromide (EtBr) across the cell envelope of Escherichia coli K-12 and derivatives, differing in the expression of their efflux systems.ResultsEtBr transport across the cell envelope of E. coli K-12 and derivatives was analysed by a semi-automated fluorometric method. Accumulation and efflux of EtBr was studied under limiting energy supply (absence of glucose and low temperature) and in the presence and absence of the efflux pump inhibitor, chlorpromazine. The bulk fluorescence variations were also observed by single-cell flow cytometry analysis, revealing that once inside the cells, leakage of EtBr does not occur and that efflux is mediated by active transport. The importance of AcrAB-TolC, the main efflux system of E. coli, in the extrusion of EtBr was evidenced by comparing strains with different levels of AcrAB expression. An experimental model was developed to describe the transport kinetics in the three strains. The model integrates passive entry (influx) and active efflux of EtBr, and discriminates different degrees of efflux between the studied strains that vary in the activity of their efflux systems, as evident from the calculated efflux rates: = 0.0173 ± 0.0057 min-1; = 0.0106 ± 0.0033 min-1; and = 0.0230 ± 0.0075 min-1.ConclusionThe combined use of a semi-automated fluorometric method and an experimental model allowed quantifying EtBr transport in E. coli strains that differ in their overall efflux activity. This methodology can be used for the early detection of differences in the drug efflux capacity in bacteria accounting for antibiotic resistance, as well as for expedite screening of new drug efflux inhibitors libraries and transport studies across the bacterial cell wall.

Highlights

  • Efflux pump activity has been associated with multidrug resistance phenotypes in bacteria, compromising the effectiveness of antimicrobial therapy

  • The combined use of a semi-automated fluorometric method and an experimental model allowed quantifying ethidium bromide (EtBr) transport in E. coli strains that differ in their overall efflux activity

  • This methodology can be used for the early detection of differences in the drug efflux capacity in bacteria accounting for antibiotic resistance, as well as for expedite screening of new drug efflux inhibitors libraries and transport studies across the bacterial cell wall

Read more

Summary

Introduction

Efflux pump activity has been associated with multidrug resistance phenotypes in bacteria, compromising the effectiveness of antimicrobial therapy. The development of methods for the early detection and quantification of drug transport across the bacterial cell wall is a tool essential to understand and overcome this type of drug resistance mechanism This approach was developed to study the transport of the efflux pump substrate ethidium bromide (EtBr) across the cell envelope of Escherichia coli K-12 and derivatives, differing in the expression of their efflux systems. Efflux pumps are major defensive components of the bacterial cell wall that actively extrude noxious compounds from the periplasm and/or cytoplasm, thereby decreasing their intracellular concentration [1,2]. AcrAB-TolC is considered the most important efflux system of E. coli, other tripartite efflux pumps, such as the AcrEF-TolC can extrude similar substrates albeit at lower efficiency levels. These pumps can be over-expressed when AcrAB is deleted or inactivated [8,11,13,14]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.