Abstract

Component analysis plays an important role in food production, pharmaceutics and agriculture. Nanozymes have attracted wide attention in analytical applications for their enzyme-like properties. In this work, a fluorometric method is described for the determination of thiamine (TH) (vitamin B1) based on hemoglobin–Cu3(PO4)2 nanoflowers (Hb–Cu3(PO4)2 NFs) with peroxidase-like properties. The Hb–Cu3(PO4)2 NFs catalyzed the decomposition of H2O2 into ·OH radicals in an alkaline solution that could efficiently react with nonfluorescent thiamine to fluoresce thiochrome. The fluorescence of thiochrome was further enhanced with a nonionic surfactant, Tween 80. Under optimal reaction conditions, the linear range for thiamine was from 5 × 10−8 to 5 × 10−5 mol/L. The correlation coefficient for the calibration curve and the limit of detection (LOD) were 0.9972 and 4.8 × 10−8 mol/L, respectively. The other vitamins did not bring about any obvious changes in fluorescence. The developed method based on hybrid nanoflowers is specific, pragmatically simple and sensitive, and has potential for application in thiamine detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.