Abstract

Metal-catalyzed oxidation (MCO) of proteins is of primary concern in the development of biotherapeutics as it represents a prominent degradation pathway with potential undesired biological and biotherapeutic consequences. We developed a fluorogenic derivatization methodology to study the MCO of IgG1 using a model oxidation system, CuCl2/L-ascorbic acid. Besides the oxidation of Met, Trp and His residues, we detected significant oxidation of Phe and Tyr in IgG1. The fluorogenic derivatization method provides an alternative approach for the rapid detection of oxidized Tyr and Phe as their benzoxazole derivatives by fluorescence spectrometry and size exclusion chromatography coupled to fluorescence detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.