Abstract

The visualization of metabolic flux in real time requires sensor molecules that transduce variations of metabolite concentrations into an appropriate output signal. In this regard, fluorogenic RNA-based biosensors are promising molecular tools as they fluoresce only upon binding to another molecule. However, to date no such sensor is available that enables the direct observation of key metabolites in mammalian cells. Toward this direction, we selected and characterized an RNA light-up sensor designed to respond to fructose 1,6-bisphosphate and applied it to probe glycolytic flux variation in mammal cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call