Abstract

Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.

Highlights

  • The development of molecular probes that can detect and quantify specific biological molecules with a high degree of sensitivity and accuracy, preferably in situ and in real-time, is an important research area since it contributes to the advancement of understanding of complex biomolecular systems and has practical applications in diverse areas, including clinical diagnostics and drug discovery amongst others

  • Molecular probes generally consist of a recognition element that can bind to the specific target, and a reporter group that, in combination with an appropriate signal transduction mechanism, translates the molecular interaction into a measurable signal

  • This review summarizes various strategies that have been successfully used for the design of fluorogenic Peptide nucleic acids (PNA) probes as well as their performances and applications when applicable

Read more

Summary

Introduction

The development of molecular probes that can detect and quantify specific biological molecules with a high degree of sensitivity and accuracy, preferably in situ and in real-time, is an important research area since it contributes to the advancement of understanding of complex biomolecular systems and has practical applications in diverse areas, including clinical diagnostics and drug discovery amongst others. Distinct advantages, but mainly that it is relatively simple, selective, highly sensitive and can be used for real-time monitoring of the biological targets and even their interactions in vivo. For nucleic acids, the latter valuable information cannot be obtained by sequencing despite the tremendous advances in the field in recent years [1]

Objectives
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.