Abstract
5-Formylcytosine (5fC) and 5-formyluracil (5fU) are natural nucleobase modifications that are generated by oxidative modification of 5-methylcytosine and thymine (or 5-methyluracil). Herein, we describe chemoselective labeling of 5-formylpyrimidine nucleotides in DNA and RNA by fluorogenic aldol-type condensation reactions with 2,3,3-trimethylindole derivatives. Mild and specific reaction conditions were developed for 5fU and 5fC to produce hemicyanine-like chromophores with distinct photophysical properties. Residue-specific detection was established by fluorescence readout as well as primer-extension assays. The reactions were optimized on DNA oligonucleotides and were equally suitable for the modification of 5fU- and 5fC-modified RNA. This direct labeling approach of 5-formylpyrimidines is expected to help in elucidating the occurrence, enzymatic transformations, and functional roles of these epigenetic/epitranscriptomic nucleobase modifications in DNA and RNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.