Abstract

The performance of lithium-ion batteries (LIBs) depends critically on the nature of the solid–electrolyte interphase (SEI) layers formed on their electrodes surfaces, which are, in turn, defined by the composition of the electrolyte solution. Here, we present a short overview and key results of a systematic study of the application of one of the recently most widely investigated components of the electrolyte solutions for LIBs, namely, fluoroethylene carbonate (FEC). We discuss the benefits of FEC-based electrolyte solutions over the most commonly used ethylene carbonate (EC)-based electrolyte solutions for different LIB systems, including the high-capacity Si anode, high-voltage LiCoPO4 and LiNi0.5Mn1.5O4, Li–sulfur, and other cathodes, as well as full Li-ion cells. Special emphasis is given to the composition and properties of the SEI that is formed on the surface of anodes and cathodes as a result of the electrochemical reduction/oxidation of FEC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.