Abstract

Fluorochromic materials that change their emission properties in response to their environment are of interest for the development of sensors, optical data storage and light-emitting materials. A thermally fluorochromic elastic polymer film that exhibits remarkable fluorochromism (from red to yellow) and enhancement of fluorescence intensity after thermal treatment (>120 °C) is designed by the incorporation of silver nanoclusters. The thermal treatment also leads to a significant increase of quantum yield and fluorescence lifetime. It is found that the thermo-induced etching on larger silver nanoclusters generates smaller silver nanoclusters. This simple and efficient size-tuning process in solid state is responsible for the thermo-fluorochromism and enhancement of fluorescence emission from silver nanoclusters. Such a thermo-fluorochromic polymer material is finally demonstrated to be useful for thermo-printing. This material illustrates a new way to make smart optical materials, particularly for potential applications in optical data storage and soft OLED display.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call