Abstract
Low band gap polymers are of great interest for future applications in solar cells. By using monofluoro-2,1,3-benzoselenadiazole (FBSe) as the electron acceptor and benzodithiophene (BDT) or indacenodithiophene (IDT) as the electron donor, two novel FBSe-based polymers, PBDT-T-FBSe and PIDT-T-FBSe, were synthesized via a microwave-assisted palladium-catalyzed Stille polymerization. Both of the polymers exhibited broad absorption and lower highest occupied molecular orbital (HOMO) energy levels, which contribute to the high short current density (Jsc) and open circuit voltage (Voc). Higher power conversion efficiencies of 5.00% for PBDT-T-FBSe and 4.65% for PIDT-T-FBSe were achieved in a bulk heterojunction (BHJ) photovoltaic device with a configuration of ITO/PEDOT:PSS/polymer:PC71BM/bis-C60/Ag under the illumination of AM1.5G at 100 mA cm−2. These results demonstrate the importance of FBSe as an electron-deficient unit in the design of donor–acceptor photovoltaic polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.