Abstract

ABSTRACT The ore at the Dwyer fluorite mine, near Wilberforce, Ontario, consists of calcite–fluorite dikes that show clear signs of flowage. Those dikes and the large-scale development of fenites at the expense of a granite–monzonite pluton can only be explained by the existence of a subjacent body of carbonatite. The dikes consist of ribbons of calcite and fluorite and contain subhedral crystals of fluorapatite aligned with the ribbons. The dikes also carry crystals of aegirine-augite, titanite, and bastnäsite-(Ce). Both the fluorapatite and aegirine-augite contain micrometric globules of boundary-layer melt that crystallized in situ to calcite, fluorite, quartz, bastnäsite-(Ce), hematite, and titanite. Fragments of the REE-enriched fenite show signs of incipient rheomorphism at a temperature estimated to be at least 725 °C. The large-scale alkali metasomatism occurred toward the end of the Grenville orogenic cycle, at a time of crustal relaxation, roughly 200 million years after emplacement of a granite–monzonite pluton. By analogy with occurrences elsewhere, it is likely that the carbonatitic melt separated immiscibly from a nepheline syenitic parental melt. Fluor-calciocarbonatitic magmatism likely is genetically linked to the U and Th mineralization in the area and contributed to the unusual geological complexity of the Bancroft–Haliburton region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.