Abstract

The practical application of lithium metal anodes is significantly impeded by poor interfacial stability and uncontrolled dendrite growth. Herein, we introduce methyl trifluoroacetate (MTFA), a low-melting-point small molecule, as an electrolyte additive in an ether-based electrolyte. This additive facilitates the formation of an in situ composite solid electrolyte interphase (SEI) layer that is rich in LiF and features an ester-based flexible matrix. The resulting composite layer exhibits high ionic conductivity and mechanical stability, effectively regulating the lithium deposition behavior over a broad temperature range and inhibiting dendrite formation. Based on MTFA, the Li||Li symmetrical cell achieves a lifespan exceeding 5000 h at room temperature and 800 h at -20 °C, both with ultralow overpotential and exceptional cycling stability. In Li||LiFePO4 full cells with a high-area loading (10.52 mg cm-2) and an N/P ratio of 1.68, an average capacity decay of merely 0.096% per cycle is observed over 200 cycles. Even at -20 °C, the Li||LiFePO4 cell shows a CE of over 99% and maintains stable cycling performance. This work provides an innovative approach for optimizing lithium metal anode interfaces and enhancing low-temperature operation capabilities through the use of electrolyte additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.