Abstract
Fluorine incorporation into silicate glasses is important for technical fields as diverse as geophysics, extractive metallurgy, reconstructive dentistry, optical devices, and radioactive waste management. In this study, we explored the structural role of fluorine in alkaline alumino-borosilicate glass, with increasing amounts of fluorine up to 25 mol % F while maintaining the glass composition. Glasses were characterized by X-ray diffraction (XRD), 27Al and 19F magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, and electron probe microanalysis. Results showed that essentially all F was retained; however, between 12 and 15 mol % F (∼3.6 and 4.5 wt % F), excess fluorine partitions to CaF2 and then NaF and Na-Al-F crystalline phases. Even prior to crystallization, there exist five distinct F sites, three of which evolve into crystalline phases. The two persistent glassy sites likely involve [4]Al-F-Ca/Na local structures. We propose a general understanding of the expected chemical shift of 19F NMR in systems containing Al, Ca, and Na.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.