Abstract

The fluorine content of Icelandic tholeiitic and alkaline basalts matches values found in similar rocks from other areas. Covariation between fluorine and incompatible minor elements such as potassium or phosphorus is found in evolved tholeiites and alkali basalts. Lack of such covariation in primitive olivine tholeiites indicates that fluorine and other incompatible minor and trace elements are not controlled by minerals such as amphibole, mica or apatite in the mantle residue, and that the covariation between these elements in the evolved basalts cannot be inherited from the mantle. Model calculations on rocks from the Langjokull area show that olivine tholeiite suites are, if derived by simple fractional crystallization, enriched in incompatible elements much in excess of the increase due to crystal removal. These observations are taken to indicate that the well documented covariation between fluorine and other incompatible elements is not established until evolution of the basaltic magma has started in crustal holding chambers. The constancy of element ratios and enrichment in excess of what can be accounted for by crystal fractionation or incremental addition of new batches of primitive magmas does indicate (1) mineral control involving amphibole, mica or apatite and (2) addition of fluorine, potassium and phosphorous from an external source. It is argued that this source is the crustal envelope of the holding chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call