Abstract

Fluorine-doped nanocrystalline tin dioxide materials (F:SnO 2) have been successfully prepared by the sol–gel process from a single molecular precursor followed by a thermal treatment at 450–650 °C. The resulting materials were characterized by FTIR spectroscopy, powder X-ray diffraction, nitrogen adsorption porosimetry (BET) and transmission electron microscopy (TEM). The mean particle size increased from 5 to 20 nm and the specific surface area decreased from 123 to 37 m 2/g as the temperature of heat treatment was risen from 450 to 650 °C. Fluorine-doped nanocrystalline SnO 2 exhibited capacity of 560, 502, and 702 mA h/g with 48%, 50%, and 40% capacity retention after 25 cycles between 1.2 V and 50 mV at the rate of 25 mA/g, respectively. In comparison, commercial SnO 2 showed an initial capacity of 388 mA h/g, with only 23% capacity retention after 25 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call