Abstract

Fluorine is an important trace element for life and human well-being. Food, in general, provides about 40 percent of the fluorine intake in the human body. In order to measure fluorine levels in human diet samples, Instrumental Neutron Activation Analysis (INAA) and Proton Induced Gamma-ray Emission (PIGE) analysis were used. Reactions19F(n,γ)20F and19F(n, p)19O were employed for determination of the fluorine concentration using a reactor neutron spectrum and epithermal neutrons. Corrections were made for the sodium matrix interference caused by the23Na(n, α)20F threshold reaction in the case of reactor neutron cyclic activation analysis and for the oxygen interference via18O(n, γ)19O reaction when using the epithermal cyclic NAA method. The fluorine content of the diet samples was also determined by PIGE analysis making use of the resonance reaction19F(p, αγ)16O at 872 keV. Cyclic Neutron Activation Analysis (CNAA) when combined with mass fractionation was found to be the most suitable for determination of low concentration of fluorine, through the19F(n, γ)20F reaction with a detection limit of 2.2 ppm in Bowen's Kale elemental standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.