Abstract

Fluorine-19 nuclear magnetic resonance has been used to investigate the histidinebinding protein J from Salmonella typhimurium. The protein has been labeled with fluorine-19 by growing the bacterial cells of a tryptophan auxotroph in the presence of 5-fluorotryptophan. Incorporation of up to 70% was achieved. The binding of l-histidine to the 19F-labeled protein is not affected by the isotopic labeling. The protein contains one tryptophan residue, giving rise to a single 19F resonance. Upon binding l-histidine to 19F-labeled histidine-binding protein J, the observed 19F resonance is shifted downfield by about 0.6 parts per million, indicating a conformational change of the protein molecule and a more hydrophobic environment for the 19F nucleus. Additional fluorescence experiments confirm that the tryptophan residue is located inside the hydrophobic core of the protein. 19F spin-lattice relaxation times of the 19F-labeled protein as a function of temperature show no difference between the free protein and the protein-histidine complex. However, the linewidth for the free protein is much larger than that of the protein-substrate complex. This can be explained by slow fluctuations between different conformations of the free protein molecule having slightly different 19F chemical shifts. Both with and without the substrate, the tryptophan residue is immobile inside the protein molecule as shown by the total disappearance of the 19F signal upon broadband irradiation at the 1H frequency. Also, the 19F spin-lattice relaxation times indicate that the protein is a rather rigid structure, in which rapid motions of the tryptophan residue on the time scale of 10 −8 second are not prominent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.