Abstract
Overexpression of the EGFR has been linked to cell malignancy, metastasis and poor prognosis thus making it a target for several FDA approved drugs such as Gefitinib and Erlotinib. Unfortunately, these drugs have yielded suboptimal clinical results. In order to evaluate and monitor EGFR-targeted treatment response at the molecular level, several PET biomarkers have been developed. One of the lead irreversible inhibitors (1) has been labeled with carbon-11, however the short half-life of this radioisotope limited the time window for in vivo studies. Compound 1 was successfully labeled with fluorine-18 via a multi-step radiosynthesis with 14% decay-corrected overall radiochemical yield, 98% radiochemical purity, specific activity of 1800 Ci/mmol (n=10) at end of bombardment, and a total radiosynthesis time of 4 h including purification and formulation. [18F]-1 will allow for prolonged in vivo studies including Micro-PET analysis of EGFR tumor-bearing animal models. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Labelled Compounds and Radiopharmaceuticals
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.