Abstract

Solution-processable small molecules (SMs) have attracted intense attention due to their definite molecular structures, less batch-to-batch variation, and easier structure control. Herein, two new SM donors based on substituted isatin unit (DI3T, DI3T-2F) are synthesized and applied as electron donors with the mixture of PC71 BM to construct organic photovoltaics. As a result, 5,6-difluoro isatin derivative (DI3T-2F) obtains a power conversion efficiency of 7.80% by a simple solution spin-coating fabrication process without any additives, solvent, or thermal annealing process. More intuitively, due to stronger intermolecular interaction and higher hole mobility after the incorporation of fluorine atoms in end units, the devices present good tolerance to active layer thickness. The results indicate that DI3T-2F shows promising potential for large-scale printing processes and flexible application of efficient small molecule organic solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call