Abstract
BackgroundPositron emission tomography (PET) is a powerful tool in medical imaging, especially in combination with the PET radionuclide fluorine-18 that possesses optimal characteristics. For labelling of biomolecules and low-molecular weight tracers, fluorine-18 can be covalently bound to silicon by either nucleophilic replacements of leaving groups (like ethers) or by isotope exchange of fluorine-19. While nucleophilic substitutions require additional purification steps for the removal of contaminants, isotope exchange with fluorine-18 results in low molar activity. Both challenges can be addressed with a detagging-fluorination of an immobilized silyl ether motif.ResultsBy overcoming the susceptibility towards hydrolysis, optimized detagging conditions (improved reaction time, fluorination reagent, linker, and resin) could afford the highly sterically hindered silyl fluoride motifs, that are commonly applied in radiochemistry in small and semipreparative scales. The described reaction conditions with fluorine-19 are transferrable to conditions with [18F]fluoride and silyl fluorides were obtained after approx. 10 min reaction time and in high-purity after mechanical filtration.ConclusionsWe present a proof-of-concept study for a detagging-fluorination of two silyl ethers that are bound to an optimized amino alcohol resin. We show with our model substrate that our solid-phase linker combination is capable of yielding the desired silicon fluoride in amounts sufficient for biological studies in animals or humans under standard fluorination conditions that may also be transferred to a radiolabelling setting. In conclusion, our presented approach could optimize the molar activity and simplify the preparation of radiofluorinated silyl fluorides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.