Abstract

We have studied the adsorption of atomic and molecular fluorines on a BC3 nanotube by using density functional calculations. It was found that the adsorption of atomic fluorine on a C atom of the tube surface is energetically more favorable than that on a B atom by about 0.97 eV. The adsorption of atomic fluorine on both C and B atoms significantly affects the electronic properties of the BC3 tube. The HOMO-LUMO energy gap is considerably reduced from 2.37 to 1.50 and 1.14 eV upon atomic F adsorption on B and C atoms, respectively. Molecular fluorine energetically tends to be dissociated on B atoms of the tube surface. The associative and dissociative adsorption energies of F2 were calculated to be about -0.42 and -4.79 eV, respectively. Electron emission density from BC3 nanotube surface will be increased upon both atomic and molecular fluorine adsorptions due to work function decrement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.