Abstract

Li-stuffed battery materials intrinsically have surface impurities, typically Li2CO3, which introduce severe kinetic barriers and electrochemical decay for a cycling battery. For energy-dense solid-state lithium batteries (SSLBs), mitigating detrimental Li2CO3 from both cathode and electrolyte materials is required, while the direct removal approaches hardly avoid Li2CO3 regeneration. Here, a decarbonization-fluorination strategy to construct ultrastable LiF-rich interphases throughout the SSLBs by in situ reacting Li2CO3 with LiPF6 at 60 °C is reported. The fluorination of all interfaces effectively suppresses parasitic reactions while substantially reducing the interface resistance, producing a dendrite-free Li anode with an impressive cycling stability of up to 7000h. Particularly, transition metal dissolution associated with gas evolution in the cathodes is remarkably reduced, leading to notable improvements in battery rate capability and cyclability at a high voltage of 4.5V. This all-in-one approach propels the development of SSLBs by overcoming the limitations associated with surface impurities and interfacial challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.