Abstract

The accumulation of marine biological growth has irreversible negative effects on shipping and coastal fisheries. In this paper, a new antibacterial nanofiller—triazole fluoroaromatic hydrocarbon−modified nano−zinc oxide (ZnO−APTES−TRF)—was prepared by a Cu(I)−catalyzed azide–alkyne click chemical reaction. The modification of nano−ZnO with triazole ring fluoroaromatic hydrocarbons were testified by FT−IR, XPS, and EDS. The grafting rate of ZnO−APTES−TRF can reach 32.38%, which was verified by the TGA test. The ZnO−APTES−TRF was mixed with zinc acrylate resin to produce a low surface energy antifouling coating with a surface water contact angle of 106°. The bactericidal rate of ZnO−APTES−TRF against Escherichia coli, Staphylococcus aureus, and Pseudoalteromonas sp. can reach more than 98% due to the synergistic effect of triazole and fluorine. The 120−day marine experiment shows that the low surface energy antifouling coating of ZnO−APTES−TRF/ZA is expected to be widely used in the field of marine antifouling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.