Abstract

This study explores the potential of using spent lithium-ion battery anodes (graphite) for fabricating symmetric energy devices through a simple regeneration process. Specifically, the use of fluorine-doped reduced graphene oxide (RGO) nanosheets derived from waste batteries as the basis for a symmetric supercapacitor (SC) device is investigated. To enhance the electrochemical energy storage capabilities, a facile hydrothermal technique is employed to synthesize fluorinated graphene. Fluorination of the graphene sheets is successfully realized, as confirmed by the presence of boron with a 2.94 at.% fluorine-doped level, according to the Energy dispersive spectroscopy (EDS) spectrum analysis. Electrochemical analysis of the F-RGO electrode performance consistent with electric double-layer capacitance. Moreover, with a three-electrode system, the F-RGO electrode achieves a maximum specific capacitance of 207F/g under a current density of 1 A/g. A two-electrode symmetric device employing F-RGO exhibits a specific capacitance of 54F/g at 1 A/g. Furthermore, electrochemical impedance measurements demonstrate low charge transfer resistance (Rct) values, specifically 8.63 Ω for F-RGO, signifying improved electrochemical performance. Thus, fluorine atomic doping in RGO nanosheets contributes to the improvements of the specific capacitance and overall superior electrochemical performance of F-RGO, and F-RGO is a highly electrochemical active material for high-performance energy storage electrodes for SCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.