Abstract
This study demonstrates the transformative impact of incorporating poly(vinylidene fluoride-co-trifluoroethylene) P(VDF-TRFE) as an additive in the hole transport layer (HTL) of 2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD). The P(VDF-TRFE) additive forms resilient coordination bonds with 4-tert-butylpyridine (TBP) and lithium bis(trifluoromethanesulfonyl)imide additives, which mitigates TBP evaporation and improves Spiro-OMeTAD film quality. In addition, we observed improvements in solar cell current–voltage characteristics consistent with increased Spiro-OMeTAD conductivity and suppressed non-radiative recombination at the HTL/perovskite interface. P(VDF-TRFE)-integrated devices exhibit an increment in power conversion efficiency (PCE) up to 24.1 % (reverse scan) from a reference PCE of 21.4 %. Furthermore, the unencapsulated P(VDF-TRFE)-integrated devices demonstrate improved stability, retaining over 90 % PCE after 45 days in an ambient atmosphere in the dark and 94 % PCE after 1080 h of continuous light-soaking in a nitrogen environment. This work demonstrates how additive engineering, as exemplified by P(VDF-TRFE), can effectively address stability and performance challenges within Spiro-OMeTAD in perovskite solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemical Engineering Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.