Abstract

ABSTRACT The fluid ferroelectrics, called ferroelectric nematics (NF), have recently become available by incorporating strong polarity into rod-shaped liquid crystal molecules. Its unprecedented electro-optic properties have created significant excitement in soft matter research. The further progression from the NF phase to the antiferroelectric smectic Z (SmZA) phase, and ultimately to the ferroelectric Smectic A (SmAF) phase, represents a remarkable journey in emerging polar liquid crystal states. Nevertheless, the limitation of NF liquid crystal materials remains one of the prominent obstacles to physical property optimization and optoelectronic device development. In this work, we synthesized a series of fluorinated liquid crystal molecules with large dipole moments and systematically investigated their phase behavior. We designed them with a similar fluorinated aromatic skeleton and varied the structures of the terminal group and bridging bond. We found that the dipole moment density and shape anisotropy significantly affect the phase behavior. Notably, diverse polar liquid crystal phases, including NF, SmZA, and SmAF were observed. Through a multi-component mixing strategy, we successfully achieved a much-expanded temperature window and improved low-temperature stability not only in the NF phase but also in the SmZA and SmAF phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.