Abstract
AbstractAs high‐energy‐density lithium‐ion batteries (LIBs) are being developed, their thermal stability problems become more apparent. In spite of elaborate precautions, exothermic reactions between electrolytes and electrode materials at elevated temperatures can lead to battery explosion. In this study, we introduce a novel flame‐retardant additive with a fluorinated hyperbranched cyclotriphosphazene structure for high‐voltage LIBs. Along with the effective reduction of flammability, it enhances the electrochemical performance by generating a thermally and electrochemically stable solid electrolyte interphase on both the cathode and the anode, which is rare for conventional additives. In full cells composed of a 5 V‐class spinel cathode and a graphite anode with practical‐level mass loading, this new additive demonstrates significant improvements in discharge capacity retention and coulombic efficiency during cycle testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.