Abstract

Lithium-sulfur (Li-S) batteries have received extensive attention because of their high theoretical energy density and low cost. However, the low sulfur utilization and the shuttle effect of polysulfide cause low initial capacity and serious capacity decay. Herein, fluorinated graphite (FG) is introduced to the cathode to alleviate these issues. The results indicated that the FG could provide additional capacity during the first discharge process and increase the porosity and polarity of the cathode via in situ formation of lithium fluoride (LiF) nanocrystals, which can enhance the infiltration of electrolyte and polysulfide adsorption. As a result, the as-prepared cathode containing FG shows a high initial specific capacity of 1602 mA h g-1 and the reversible specific capacity is 650 mA h g-1 at 0.5C after 300 cycles. Moreover, its specific capacity remains at 860 mA h g-1 at 5C, which is 367% higher than that of the sample without FG. This paper provides a new strategy to improve the energy density and the cycle stability of Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.