Abstract

AbstractThe thermomechanical behavior of fluorinated and oxyfluorinated Kevlar fiber‐reinforced ethylene propylene (EP) composites has been studied. The composites have been prepared using brabender mixer and are cured using compression molding technique. FTIR study has been performed to understand the chemical reaction occurred due to modification of composites. Thermal behavior and crystallinity have been studied by DSC, TGA, DMTA, and XRD. These studies show that thermal stability, storage modulus, as well as crystallinity of the treated Kevlar fiber‐reinforced EP increases in comparison to the untreated derivative because the surface‐modified Kevlar fiber results in good adhesion between the fiber surface and EP matrix. Tensile strength increases in case of treated Kevlar fiber‐reinforced EP in comparison to the untreated one. SEM study supports all the above results. AFM results show that surface roughness increases because of the surface modification resulting from the incorporation of functional group‐induced Kevlar fiber. Polym. Compos. 27:205–212, 2006. © 2006 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.