Abstract

Fluorinated carbohydrates are valuable tools for enzymological studies due to their increased metabolic stability compared to their non-fluorinated analogues. Replacing different hydroxyl groups within the same monosaccharide by fluorine allows to influence a wide range of sugar-receptor interactions and enzymatic transformations. In the past, this principle was frequently used to study the metabolism of highly abundant carbohydrates, while the metabolic fate of rare sugars is still poorly studied. Rare sugars, however, are key intermediates of many metabolic routes, such as the pentose phosphate pathway (PPP). Here we present the design and purely chemical synthesis of a set of three deoxyfluorinated analogues of the rare sugars d-xylulose and d-ribulose: 1-deoxy-1-fluoro-d-ribulose (1DFRu), 3-deoxy-3-fluoro-d-ribulose (3DFRu) and 3-deoxy-3-fluoro-d-xylulose (3DFXu). Together with a designed set of potential late-stage radio-fluorination precursors, they have the potential to become useful tools for studies on the complex equilibria of the non-oxidative PPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.