Abstract

Fluoride-based mouthwashes and gels are preventive measures in countering demineralization and caries but, modifying environmental acidity, can reduce the wet corrosion resistance of orthodontic alloys. To evaluate chemical stability, in vitro experiments were conducted on stainless steel and nickel–titanium wires, weighed before and after immersion in household fluorinated mouthwashes and gels, measuring weight variations and elution of metal ions from acid corrosion phenomena. Elution samples were analyzed by inductively coupled plasma mass spectrometry, detecting residual ion concentration, while surface changes were analyzed under scanning electron microscopy. Results showed stainless steel wires do not undergo significant erosion when exposed to most fluorinated mouthwashes but, at prolonged exposure, alloys elute gradually greater amounts of metals and Ni–Ti wires become more sensitive to some mouthwashes. Ions’ elution varies considerably, especially for Ni–Ti wires, if exposed to household fluorinated gels, for which significant negative values were obtained. Changes, affecting wires’ outer layer, negatively act on shiny appearance and luster, reducing corrosion resistance. Although examined orthodontic wires showed good chemical stability and low toxicity, surface corrosion from exposure to fluorinated agents was observed. Home use must be accompanied by clinician prescription and, for household dental gels, must follow manufacturers’ recommendations, ensuring prophylactic action without damaging alloys surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.